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A model is presented for steady two-dimensional Stokes flow in a bifurcating channel. 
The geometry of the bifurcation is symmetric, but the flow rates through the two 
branches may be unequal. It is found that separation takes place on the outer 
boundary of the channel for either a smooth or a sharp flow divider, but only when 
the flow rates through the two branches of the channel are sufficiently different. 

1. Introduction 
The motion of a viscous fluid through's bifurcating channel is of interest in 

physiology and engineering science. A mathematical description of the general 
problem presents difficulties due to the complexities of the boundary geometry which 
is fully three-dimensional. In  addition, the flows of interest take place at large 
Reynolds number, and the motion may be pulsatile. It is because of these facts that 
most of the useful information concerning bifurcating flows has been determined 
empirically (see Pedley 1980). 

There is a scarcity of solutions to boundary-value problems in fluid mechanics that 
contain a flow divider, even in potential flow and also at low Reynolds numbers. This 
is the motivation for the present work. 

In  this paper a two-dimensional Stokes-flow model of a bifurcation is presented 
for the motion inside a cylinder whose cross-section is an elliptic limapon. For certain 
values of the parameter describing the limapon, the boundary has a convex 
indentation which becomes a cusp in the limiting case of a cardioid. This indentation 
plays the role of a flow divider, and the motion is caused by a line source at the point 
where the positive axis meets the boundary curve and is absorbed away by two line 
sinks, in general of unequal strengths, located at points in the two branches of the 
channel. 

It is possible to determine a two-dimensional harmonic function satisfying the 
boundary conditions, explicitly, end in a h i t e  form. The main interest centres on 
the shear sFress at the boundary, or equkhlently the boundary vorticity. Owing to 
the fact that there is a spreading on the coefficients contained in the stream function 
$ (that is, the arbitrary coefficients in $ are determined by difference and not 
simultaneous equations) it follows that the boundary vorticity is found in a finite but 
cumbersome form. It is found that when the flow divider is present the boundary 
vorticity may change on the boundary of weaker sink strength, thus indicating a 
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region of reversed flow attached to the wall. Separation has been observed experi- 
mentally in three-dimensional flow by Schroter t Sudlow (1969) and by Smith, Cotton 
& Freedman (1974) for a two-dimensional bifurcation. Some numerical values are 
given for the vorticity on the boundary for different values of the parameter 
describing the boundary geometry and also for various distances along the boundary. 
It is worth mentioning that when separation takes place in Stokes flow it is almost 
certain to occur a t  higher Reynolds numbera, even though the separation region is 
modified. Another point is that there is a strong analogy between two- and 
three-dimensional Stokes flow for flows in which separation takes place. This has been 
demonstrated by Dorrepaal (1979) for the case of flow past a circular arc and by 
Dorrepaal, O'Neill & Ranger (1976) for the streaming flow past a spherical cap. 

The presence of separation in the model considered in this paper can be attributed 
to the presence of the flow divider, since in the corresponding flow inside a circle there 
is no separation regardless of the relative strengths of the sinks (see Ranger 1961). 

2. Geometry of bifurcation 
Consider the conformal transformation 

z = x+iy = ( 1 + ~ [ ) ~ ,  0 < E < 1, (1)  

(2) 

(3) 

The interior of the unit circle 0 < p < 1 in the [-plane is mapped conformally into 
the interior of an elliptic limapon in the z-plane. For 0 < E < f the boundary is 
everywhere concave to the interior region, but for i < E Q 1 the boundary has a 
convex indentation with nose at p = 1, # = x ;  see figures 1-3. The indentation 
becomes a cusp at E = 1, which corresponds to the case of a cardioid, the origin being 
the sharp point of the cusp. In the case of the cardioid the boundary ranges from 
-f < x < 4 and l y l  < i t / 3 .  The maximum value of y occurs at 4 = ix. The least 
value of x occurs at g5 = ix, and the largest at g5 = 0. Also, in the case 8 = 1 the point 
p = 1, q5 = x is a point of transformation (1) which is not conformal. 

The convex indentation plays the role of a flow divider in a model of viscous flow 
through a two-dimensional bifurcating channel. The motion is created by a line source 
at p = 1, # = 0 and is absorbed away by two line sinks (in general of unequal 
strengths) located at p = 1, 4 = fa, in < a < x. In the case of the cardioid, a can 
be taken as ix, which corresponds to the point most remote from the origin, parallel 
to the x-axis. 

where [ = E+iq = pe'+. The real and imaginary parts of z are 

x = 1 +2€p COS#+E2P2 cos 24,  

y = 2 ~ p  sin 4 + e2p2 sin 24. 

3. Equations of motion and method of solution 

an Earnshaw stream function + by 

where R is the unit vector perpendicular to the plane of motion. In the absence of 
convection terms the Stokes equations are, in non-dimensional form, 

For steady two-dimensional flow the fluid velocity can be prescribedin terms of 

q = curl { - +&}, (4) 
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FIGURE 1. 0 < E < 4; no indentation (the explicit plot shown is for E = 0.15). 

FIGURE 2. 4 < E < 1 ; smooth flow divider (the explicit plot shown is for E = 0.75). 

where p is the pressure and V: E a2/ax2+a2/ay2 is the two-dimensional Laplacian. 
If the pressure is eliminated from (5) the stream function satisfies the biharmonic 

(6) 
equation v;$ = 0. 

A suitable representation for $ in the present case is 

$ = $1 +"$2, 

where and $2 are two-dimensional hakmonics satisfying 

v:$l = 0, v:@2 = 0. 
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-'t 
FIGURE 3. E = 1 ; cardioid flow divider has a cusp at the origin. 

It follows from ( 5 )  and (7) that the pressure can be related to $2 in the form 

Since the two-dimensional Laplace equation is conformally invariant under the 
transformation (I) ,  appropriate general forms in ( p ,  #)-coordinates for $1 and e2 are 

m m 

$l = Z A,pn sin@+ Z c ,pn cosn$, (10) 

$, = B,pn sinnq5+ Dnpn cosn#, (11) 

n-1 n -0 

a0 m 

n-1 n-0 

where the coefficients A,, B,, C,, D ,  are to be determined. If (10) and (11) are 
substituted in (7),  then $ may be expressed by 

$ = { ( A l + B l ) p + B , p 3 e + $ 2 B 3 p 5 - ~ 2 B 1 p 3 }  sin$ 

+ { (A2 + B,) p2 + B, p2e + B, p4e + +B4 ezp6} sin 24 

+ co + Do + ED1 p2++2D2 p4 

+ Wl+ 0 1 )  P + ED0 P + 0 0  P + D , p 3 )  +$2(D, p3+ D,p5)] COS # 
+ [ (C,  + Dz)  p2 + €Dl p2 + €4 p4 + p D ,  p2 + g(D, p2 + D, pa)] COB 2g5 

m 

12-3 
+ Z [ ( C ,  + D , ) p n +  eD,~lpn+eD,+lpn+2+$zDn--2pn+~aD,+2pn+4] COST$. 

(12) 
Taking account of the source and sinks, the appropriate boundary conditions are on 
p = l  

(13) 
$ = M (0 < q5 < a), $ = k ( a < # < x ) ,  

$ = - M ( O  > # > -a), II. = k (-a > # > -n), 

and Y = o  a t p = l  ( - n c # c x ) .  (14) 
aP 
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The symmetric case has k = 0 : the ratio k / M  is a measure of the asymmetry of the 
flows into the two sinks. For n 2 3 the Fourier components of sinnq5 give 

= $(I ,$)  sin qb d4 = s," sin d$ 
* --x 

2M 1-cosna =- 
7 

R n 
and from (14) 

nA, + nB, + neBn-, + E(n + 2 )  B,+l + fne2B,-, + +,B,+,(n + 4 )  = 0.  (16) 

Elimination of A ,  yields 

(17 )  
M 

eB,+,+s2B,+, = - (cosnu-l) ,  n 2 3,  
R 

and the solution (see Appendix A) is given by 

M M c o s ( n + l ) a  M cosnu +- +- 
(18) 

for n 2 3. The coefficients B,, n = 1, ..., 4 are also given in Appendix A. The series 
ZZ-, B, p n  sin n$ can be summed by standard methods, and is given in Appendix A. 
Again, for n 2 3 the Fourier component in cosn9 gives 

Bn+2 = -ns ( l+s )  RE 1 + 2 s  cosa+E, It 1 +2€ cosa+E2 

C, + D, +  ED,-^ + ED,+, + !jc2D0,-, + +2D,+2 

(19) 
2k 2k sinnu = !. s' $(l,$) cosn4 d# = 

Itn --I 

and nC,+nD,+~D,~,+(n+2)sD,+l++2nD,~,++2D,+,(n+4) = 0. (20) 

Elimination of C, from (19) and (20)  yields the following difference equation for the 

coefficients D, : k sinnu 
ED,+, + s2D,+, = ~ , n 2 3 .  

The solution is described in Appendix B, and is given by 
R 

k sin (n + 1) a + ke sin na , n 2 3 .  
RE( 1 + 2E cos a + €2) 

Dn+2 = 

Equations are also given for D,, D,, D,, D, in Appendix B. Also, from Appendix B, 
the series Z:-, D,+, pn+, cos (n + 2 )  4 can be summed by standard methods. 

It follows that the harmonic function +, is uniquely determined, and is expressed 
by 

$, = B, p2 sin 2 4  + B, p3 sin 34 + B, p4 sin 44 + D, p cos 4 + D, p2 cos 2 4  

I M (pl sin54-pa sin@ 
+D3p3 c0s3$+D4p4 COs4(b- 

R S ( l + € )  1 -2p  cos$+p2 

p5 sin (54 + 4a) -p6 sin (44 + 3a) + ep5 sin (54 + 3a) -ep6 sin (44 + 2a) 
2RE (1+2€ cosa+E2)(1-2p cos($+a)+p2) 

p5 sin (54 -4a) -p6 sin (44 - 301) + cp5 sin (54 - 3a) - €p6 sin (44 - 2 a )  
( 1  + 2E cos a + E 2 )  ( 1  - 2p cos ($4 -a) +p2) 2RE 

(23)  
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The vorticity w in (p ,  $)-coordinates is given by 

a$, s sin 4 + s2p sin 24 
(8 cos 4 + sap cos 24) ~- I aP P 

1 
o =  

4sZ( 1 + 2sp cos $75 + E 2 p 2 )  

and on the boundary p = 1 

(s cos4+s2 -(e sin$+s2 
1 

4s2( 1 + 2s cos 4 +s2) 
w =  

1 W - -- 
4e2 (1+2€ C O S 4 + € 2 ) ’  

where W is defmed by 

W = 2sB2 sin 4 + 3B,(s sin 24 + s2 sin 4) 
4 + 4B4(s sin 34  + s2 sin 24) + E eD,[s cos (s - 1)  4 + s2 cos (s - 2) 41 

. s cosd+s2 cos24 (5 sin44-4 sin54 

8-1 

X B  I (1 +€) ( 1 - C O S 4 )  

I 
I1 

I 

I 

M+k 4sin(5$+4a)-5 sin(4$+3a)+41zsin(5q5+3a)-55ssin(4q5+2a) 

M -  k 4 sin (54 - 4a) - 5 sin (44 - 301) +4e sin (54 - 3a) - 5s sin (44 - 201) 

+-I 4 

+-I 4 ( 1 + 2 s c o s a + s ~ ) [ 1 - c o s ( ~ - a ) ]  

+-{ 4 

--I 4 

+-{ 4 ( 1 + 2 s c o s a + s 2 ) ( 1 - c 0 s ( ~ - a ) )  

--I 4 

(1 + 2s cos a+@) [l- cos (4 +a)] 

1 { ( 1 + 4  1-cos4 (1 - cos $)Z 

4 cos 44 - 5 cos 54 (sin 44 - sin 54) sin 4 - E sin 9 + c2 sin 24 - 
X E  

M +  k 5 cos (54 +4a) -4 cos (44 + 3a) + 5s cos (54 + 301) -4s cos (44 + 2a) 
(1  + 2€ COB a +s2) (1  - cos (4 + a)) 

} sin (++a) 
M +  k sin (54 + 4a) -sin (44 + 301) + 6 sin (54 + 301) -s  sin (44 + 2a) 

M-k 5 cos(5$-4a)-4 c o s ( 4 ~ - 3 a ) + 5 ~ ~ 0 ~ ( 5 ~ - 3 a ) - 4 a c o s ( 4 ~ - 2 a )  

M -  k sin (54-4a) -sin (44 - 301) + E sin (54-3a)--s sin (44-201) 

(1 + 2s cos a + €2) (1 - cos (4 +a))2 

1 (1 + 2 E  cos a + €2) [ 1 - cos (4 - a ) ] 2  

xsin(q5-a) . (27 1 I 
The most interesting feature of the flow is the calculation of the outer wall stress, 
or equivalently the vorticity on the boundary p = 1.  To this end it suffices to 
determine the function )cr2 which forms part of the stream function $. Also it is only 
necessary to calculate the boundary vorticity for various values of k / M  and s in the 
range 0 < 4 < a. As already explained, a can be taken as in. The vorticity is locally 
large and negative at 4 = 0 + and 9 = $X - , where the effects of the line source and 
sink dominate the flow. Numerical values for the boundary vorticity are given in 
tables 1-3 and in figures 4-6, for the cases E = 0.5 where there is no flow divider, 
E = 0.95 where the flow divider is smooth, and E = 1 where the flow divider is a cusp. 
These values indicate that for sufficiently large values of k, 0 < k < M, there is a 
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\' 0.25 0.50 0.75 1 .oo 1.25 1.50 1.75 2.00 
k / M  

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1 .00 

-5.38974 -2.78489 -1.97036 -1.62476 -1.50599 -1.58948 -2.08585 -5.85002 
-5.35644 -2.75061 -1.93423 -1.58539 -1.46088 -1.53299 -2.00000 -5.57327 
-5.32315 -2.71034 -1.89809 -1.54602 -1.41577 -1.47650 -1.91415 -5.29651 
-5.28985 -2.68207 -1.86195 -1.50665 -1.37065 -1.42001 -1.82831 -5.01976 
-5.25655 -2.64779 -1.82582 -1.46728 -1.32554 -1.36351 -1.74246 -4.74301 
-5.22326 -2.61352 -1.78968 -1.42791 -1.28043 -1.30'702 -1.65661 -4.46625 
-5.18996 -2.57924 -1.75355 -1.38854 -1.23532 -1.25053 -1.57077 -4.18950 
-5.15666 -2.54497 -1.71741 -1.34917 -1.19020 -1.19404 -1.48492 -3.91274 
-5.12336 -2.51070 -1.68128 -1.30980 -1.14509 -1.13755 -1.39907 -3.63599 
-5.09007 -2.47642 -1.64514 -1.27043 -1.09998 -1.08105 -1.31322 -3.35923 
-5.05677 - 2.442 15 - 1.60900 - 1.231 07 - 1.05487 - 1.02456 - 1.22738 - 3.08248 
-5.02347 -2.40787 - 1.57287 -1.19170 -1.00975 -0.96807 -1.14153 -2.80572 
-4.99018 -2.37360 -1.53673 -1.15233 -0.96464 -0.91158 -1.05568 -2.52897 
-4.95688 -2.33932 -1.50060 - 1.11296 -0.91953 -0.85508 -0.96984 -2.25221 
-4.92358 -2.30505 - 1.46446 - 1.07359 -0.87442 -0.79859 -0.88399 - 1.97546 
-4.89029 -2.27078 -1.42833 -1.03422 -0.82930 -0.74210 -0.79814 -1.69870 
-4.85699 -2.23650 - 1.39219 -0.99485 -0.78419 -0.68561 -0.71230 -1.42195 
-4.82369 -2.20223 - 1.35605 -0.95548 -0.73908 -0.62912 -0.62645 -1.14519 
-4.79040 -2.16795 - 1.31992 -0.91611 -0.69397 -0.57262 -0.54060 -0.86844 
-4.75710 -2.13368 - 1.28378 -0.87674 -0.64885 -0.51613 -0.45475 -0.59169 
-4.72380 -2.09941 - 1.24765 -0.83737 -0.60374 -0.45964 -0.36891 -0.31493 

TABLE 1. Calculation of vorticity W as a function of 4 for E = 0.50 

k / M  \' 
0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1 .00 

0.25 0.50 0.75 1 .oo 1.25 1.50 1.75 2.00 

-6.03971 -3.16424 -2.28998 -1.94709 - 1.87381 -2.06426 -2.83638 -8.33290 
-5.96125 -3.08436 -2.20740 -1.85983 -1.77823 -1.95219 -2.68178 -7.90171 
-5.88279 -3.00449 -2.12482 -1.77256 -1.68264 -1.84012 -2.52718 -7.47052 
-5.80433 -2.92461 -2.04225 -1.68530 -1.58706 -1.72806 -2.37258 -7.03933 
-5.72586 -2.84473 -1.95967 -1.59804 -1.49148 -1.61599 -2.21798 -6.60814 
-5.64740 -2.76485 -1.87710 -1.51078 -1.39590 -1.50392 -2.06339 -6.17695 
-5.56894 -2.68497 -1.79452 -1.42352 -1.30032 -1.39185 -1.90879 -5.74576 
-5.49048 -2.60509 -1.71195 -1.33626 -1.20474 -1.27978 -1.75419 -5.31457 
-5.41201 -2.52522 -1.62937 -1.24900 -1.10916 -1.16772 -1.59959 -4.88339 
-5.33355 -2.44534 -1.54680 -1.16174 -1.01358 -1.05565 -1.44499 -4.45220 
-5.25509 -2.36546 -1.46422 -1.07448 -0.91800 -0.94358 - 1.29040 -4.02101 
-5.17663 -2.28558 -1.38165 -0.98722 -0.82242 -0.83151 -1.13580 -3.58982 
-5.09816 -2.20570 -1.29907 -0.89996 -0.72683 -0.71944 -0.98120 -3.15863 
-5.01970 -2.12583 -1.21650 -0.81270 -0.63125 -0.60737 -0.82660 -2.72744 
-4.94124 -2.04595 -1.13392 -0.72544 -0.53567 -0.49531 -0.67200 -2.29625 
-4.86278 -1.96607 -1.05135 -0.63818 -0.44009 -0.38324 -0.51740 -1.86506 
-4.78431 -1.88619 -0.96877 -0.55092 -0.34451 -0.27217 -0.36281 -1.43388 
-4.70585 -1.80631 -0.88619 -0.46366 -0.24893 -0.15910 -0.20821 -1.00269 
-4.62739 -1.72643 -0.80362 -0.37639 -0.15335 -0.04703 -0.05361 -0.57150 
-4.54893 -1.64656 -0.72104 -0.28913 -0.05777 0.06504 0.10099 -0.14031 
-4:47046 - 1.56668 -0.63847 -0.201 87 0.03781 0.177 10 0.25559 0.29088 

TABLE 2. Calculation of vorticity W a s  a function of 4 for E = 0.95 
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\' 0.25 0.50 0.75 1 .OO 1.25 1.50 1.75 2.00 
k / M  

0.00 -6.09504 -3.19825 -2.32042 - 1.97952 -1.91248 -2.11587 -2.91999 -8.61451 
0.05 -6.00798 -3.10973 -2.22910 -1.88335 -1.80769 -1.99401 -2.75411 -8.16227 
0.10 -5,92092 -3.02120 -2.13778 -1.78718 -1.70291 -1.87216 -2.58822 -7.71002 
0.15 -5.83386 -2.93267 -2.04647 -1.69101 -1.59813 -1.75031 -2.42233 -7.25777 
0.20 -5.74679 -2.84415 -1.95515 -1.59484 -1.49334 -1.62845 -2.25645 -6.80552 
0.25 -5.65973 -2.75562 -1.86383 - 1.49867 -1.38856 -1.50660 -2.09056 -6.35328 
0.30 -5.57267 -2.66709 -1.77251 -1.40250 -1.28377 -1.38475 -1.92468 -5.90103 
0.35 -5.48561 -2.57857 -1.681 19 -1.30633 -1.17899 -1.26289 -1.75879 -5.44878 
0.40 -5.39855 -2.49004 -1.58987 -1.21016 -1.07421 -1.14104 -1.59290 -4.99653 
0.45 -5.31149 -2.40151 -1.49855 -1.11399 -0.96942 -1.01918 -1.42702 -4.54429 
0.50 -5.22443 -2:31299 -1.40723 - 1.01782 -0.86464 -0.89733 -1.261 13 -4.09204 
0.55 -5.13737 -2.22446 -1.31591 -0.92165 -0.75985 -0.77548 -1.09524 -3.63979 
0.60 -5.05031 -2.13593 -1.22460 -0.82548 -0.65507 -0.65362 -0.92936 -3.18754 
0.65 -4.96325 -2.04741 - 1.13328 -0.72931 -0.55029 -0.531 77 -0.76347 -2.73530 
0.70 -4.87619 - 1.95888 - 1.04196 -0.63314 -0.44550 -0.40992 -0.59759 -2.28305 
0.75 -4.78913 - 1.87036 -0.95064 -0.53697 -0.34072 -0.28806 -0.43170 -1.83080 
0.80 -4.70207 - 1.78183 -0.85932 -0.44080 -0.23593 -0.16621 -0.26581 -1.37855 
0.85 -4.61500 - 1.69330 -0.76800 -0.34463 -0.131 15 -0.04436 -0.09993 -0.92631 
0.90 -4.52794 - 1.60478 -0.67668 -0.24846 -0.02637 0.07750 0.06596 -0.47406 
0.95 -4.44088 -1.51625 -0.58536 -0.15230 0.07842 0.19935 0.23184 -0.02181 
1.00 -4.35382 - 1.42772 -0.49404 -0.05613 0.18320 0.32121 0.39773 0.43043 

TABLE 3. Calculation of vorticity Was a function of 4 for B = 1.00 

0 

- 1  

-2  

- 3  

w 

-4 

- 5  

-6  

- 7  
0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

4 
FIGURE 4. Variation of boundary vorticity with angular position for e = 0.5. 

change in sign of the vorticity (that is, the vorticity becomes positive in the range 
0 < $ < fn). This in turn implies that separation takes place on the boundary when 
E = 0.95 and 8 = 1 and the flow rate through the two branches are unequal. I n  fact 
separation occurs when most of the flow passes through one branch of the channel. 
A sketch of the streamlines when separation occurs is given in figure 7. 
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P 
F ~ U R E  5. Variation of boundary vorticity with angular position for E = 0.95. 

0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

FIGURE 6. Variation of boundary vorticity with angular position for E = 1. 
+ 

It is of interest to consider values of a in the range in < a < n ;  that is, when the 
line sinks move closer to the flow divider. For a = jn, in there is no separation for 
any value of k / M  when E = 0.5 and there is no flow divider. For 8 = 0.95, there is 
separation for a = jn when k / M  = 0.85, and for a = in when k / M  = 0.70. For the 
sharp flow divider E = 1 there is separation at a = fn when k / M  = 0.70, and at a = ~ T C  

when k / M  = 0.55. 
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FIGURE 7. Sketch of the streamlines for a smooth flow divider, E = 0.95. 

4. The motion in the absence of a flow divider 
It is readily shown from Ranger (1961) that the boundary vorticity on the circle 

r = 1, for flow inside i t  due to a line source of strength m,+m, at r = 1, 0 = a and 
two line sinks of strengths ml at r = 1, 0 = -a and m, a t  r = 1, 0 = a-2/3, can be 
expressed by 

W = 2k,{(m,+m,) cot#3-a)-mm, cot+(0+a)-m2 cot&(O-a+2/3)}, (28) 

where 0 < a < x, 0 < /I < A, and k, is a constant. It can be verified from (28) that 
W does not pass through zero and change sign on the circle r = 1. This is also the 
case in $3  for e = 0.5 where the flow divider is absent. Hence the separation that takes 
place fore = 0.95 and E = 1 can be attributed to the presence of the flow divider, which 
projects into the fluid region. 

5. The special case a = gx, E = 1, M = k 
In this case the line sink at  4 = a = in is absent and the flow is entirely absorbed 

away by the line sink at 4 = -a = -in in the lower half-plane. Equation (27) then 
simplifies considerably to the following form : 

1 M 5(sin 34 +sin 24) -4(sin 44 +sin 3+) 
2x 

W=-{ 
2( 1 - cos 4) 

4[sin(4g5+$x)+sin4q5+sin(34+ R 
2x l-cos(q5+$x) )+sin3411 

5[sin 34 + sin (34 +$) +sin 24 +sin (24 ++R)] 

1 - cos ($4 +in) 2x 

(sin 4 + sin 24) + - M43(1+cos4). 9M 
2x R 

-- 

Some numerical values for the boundary vorticity are listed in tables 1-3, indicating 
separation in the upper half-plane. In fact, for the situation k = M, E = 1, where there 
is no sink in the upper half-plane, the separation region extends right up to the cusp. 

In  conclusion, the numerical values indicate that when the sink is sufficiently strong 
in the lower half-plane then separation takes place in the upper half-plane. These 
results are consistent with the experimental results for two- and three-dimensional 
flows in bifurcating channels. The separation will also be present in a three-dimensional 
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model with a plane of symmetry. The separation will take place in the plane of 
symmetry, but elsewhere will be modified by the effects of azimuthal swirl. 

As the Reynolds number increases from zero the flow is likely to be more 
concentrated in the region of streamlines joining the source and sink of stronger 
strength, as it is in the situation of Jeffery-Hamel flow. The region of stagnant fluid 
in the upper half-plane will become significant in producing reversed flow as the 
Reynolds number is increased. Batchelor (1967) has sketched the streamlines for 
uniform flow through a pipe towards a sudden enlargement. This suggests that the 
eddy region will be larger and the point of attachment (and reattachment) for the 
bounding streamline will occur closer to source and the sink of weaker strength 
respectively. 

Appendix A 
The difference equation (18) can be written as 

(A 1) 
M 

( - ~ ) ~ + l  Bn+l- ( 

for n 2 3. Summing from n = 3 to n = m gives 

B,+, = ( - l)n en - (1  - cos na) 
x 

e4B,- ( -  l)m+z 

(A 2) 
M m 

n-3 
= c (-l)nEn-(l-cosm) 

x 

(A 3) 
M m  M€ M 

x n-1 
= - r, (-E)" (1 -cos m) +- (1 - cosa) --€2(1 -cos 2 4 .  

x x 

Employing the result 

m --E cosa-~Z+ ( - sm+1 cos (m+ 1 )  a+ ( -  l)m cos ma c ( - E ) n  cosm = - 
n-1 1+2E COSOl+E2 

, 
(A 4) 

it follows that for m 2 3 

( -  l ) m  P+2B m+a 

ME2 ME ME 1 - ( - ~ ) ~  
x x x 1 + E  

= E4B4 +- (1 - cos 2a) -- (1 - cos a) +- 
M E cosa-e2 + ( - l)m em+l cos (m+ 1) a+ (- l)m cos ma) 

+-{- x 1+2€ cosa+s2 
In order to avoid a singularity in the fluid region at p = E ,  4 = x it  is necessary to 

M(E cos a + s2) 
= 0, ME2 ME ME 

set 
B, C +- (1 - cos 261) -- (1 - cos a) +-- 

x x R ( l + € )  n(1+2s cosa+s2) 
so that for n 2 3 (A 6 )  

(A 7)  
M 1 M c o s ( n + l ) a  M cosm 

B,+, = -- - +- +- 
7CE l + E  XE 1 +2E C O S d + E 2  x 1 +2e cosa+g52' 

The boundary conditions for the Fourier components sin 4 and sin 24 yield 
2M 

M 
EB, + s2B - - (COS 2a- 1). 

~ E B ,  + 2e2B3 - c2B, = - (COS a- 1). 
x 

,- x 



amm

Without loss of generality, B, = 0, and the series 

K. B. Ranger and H. Brenner 

00 

B,  p n  sin n$ = B, pa sin 24 + B, p3 sin 34 + B, p4 sin 44 
n-2 

M a  - E pn+2 sin (n + 2) 4 
A€( 1 + e) 12-3 

M pn+2sin(n+2)#cos(n+l )a  
1+2s cosa+s2 +- E 

n-2 

(A 10) 
M O0 p"+2 sin (n+ 2) 4 cos nu 

+& 22 1 +2E cosc%+a2 

The three series in (A 10) can be summed by standard methods for 0 < p < 1, and 

Z B, p n  sin n4 
a, 

n.-2 ._ - 

= B2p2 sin2$+B,p3 sin3$+B,p4 sin44 - 
M p5 sin 54 -p6 sin 44 

xs(l+s) 1-2pcos4+p2 

1 
I- 

p5 sin (54 + 4a) -p6 sin (44 + 3a) + sp5 sin (54 + 301) - ep6 sin (44 + 2a) 

p5 sin (54 - 4a) -p6 sin (44 - 3a) + sp5 sin (54 - 301) - ep6 sin (44 - 2a) 

271s (1+2€cosa+€2)(1-2p cos($+a)+p2) 

271s ( 1 + 2 ~  cosa+s2) (1-2p cos(+-a)+p2)  

(A 11) 

Appendix B 
The difference equation for D ,  in (23) can be written in the form 

k 
( - ~ ) ~ + l  D,+, - ( - Dn+, = - ( - 1 )n+l en sin na. 

x 

If (B 1) is summed from n = 3 to n = m then 

k m  

71 n-3 
D, s4 + €( - s)m+l Dm+, = -- E ( - c ) ~  sinna 

k m  ks k52 
- - -- Z ( - E ) ~  sinna-- sina+- sin2a. 

x n-1 71 x 
(B 3) 

Now utilizing the result 
m 
C ( - s ) n  sinna = 

n-1 

{ - E sin a + P + l (  - l)m sin (m + 1) a + ( - l)m sin ma} 
1 +2e c0sa+s2 

, 

(B 4) 
i t  follows that for n 2 3 

ka sina-ksn+'( - l)n sin (n+ l)&-k( - l)nsn+2 sinnu ( -  l ) n + l  p+2D - 
n+z - X(l+26 cosa+s2) 

ks ks2 
--sina+-sin2a-D4s4. 

x x 
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In  order to  eliminate a singularity in the fluid-velocity field at p = e, 9 = x it is 
necessary to choose 

so that 

k ke ke sin a 
x x x(1+2s cosa+e2)'  

D , k  = -8 sin2a-- sina+ 

k sin (n+ 1) a + k c  sinna 
, n 2 3 .  

Dn+z = xs(1+2e cosa+ez) 

The Fourier coefficients for n = 0, 1, 2 yield 

2k 
2sD, + e2D, + 2szD3 = - sin a, 

x 

k sin 2a 
ED, + s'D, = ~. 

x 

Without loss of generality, the coefficient Do = 0, and the series 
m 
X Dn+zpn+z cos (n+ 2)  4 = - X pn+2 

k m  (sin (n+ 1) a+ e sinna) cos (n+2)  9 
n-3 a 12-3 1 +2e cosa+€2 

The series in (B 10) is readily summed for p < 1 ,  and 

X Dn+, pn+2 cos (n + 2)  9 
a0 

n-3 

kp5 sin (5# + 4a) - p  sin (4$ + 3a) + s sin (5# + 3a) -ep sin (49 + 201) 
2xs (1+2s cosa+e2) [1+p2-2p cos($+a)] 

-4 2xs (1+2scosa+e2)[1+p2-2p cos(9-a)l 

=-( 
kp6 sin (54 - 4a) - p sin (44 - 3a) + s sin (59 - 3a) - ep sin (44 - 2a) 
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